Rechercher
Fermer ce champ de recherche.

Publications

Published papers acknowledging the XAIDA project

Bastos, A., Sippel, S., Frank, D., Mahecha M., Zaehle, S., Zscheischler, J., Reichstein, M., (2023).A joint framework for studying compound ecoclimatic events“. Nat Rev Earth Environ 4, 333–350. https://doi.org/10.1038/s43017-023-00410-3

 

 

Benson V, Robin C, Requena-Mesa C, Alonso L, Carvalhais N, Cortés J, Gao Z, Linscheid N, Weynants M, Reichstein M. (2024). “Multi-modal Learning for Geospatial Vegetation Forecasting.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), p. 27788-27799 (2024) CVPR 2024 Open Access Repository (thecvf.com)

 

Bevacqua, E., Zappa, G., Lehner, F., Zscheischler, J.(2022). “Precipitation trends determine future occurrences of compound hot–dry events“. Nature Climate Change. https://doi.org/10.1038/s41558-022-01309-5

 

Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., van der Wiel, K., Wu, W., Zhang, T., Zscheischler, J. (2021).Guidelines for Studying Diverse Types of Compound Weather and Climate Events“. Earth’s Future. Volume 9, Issue 11. 25 October 2021. https://doi.org/10.1029/2021EF002340

 

Bevacqua, E., Suarez-Gutierrez, L., Jézéquel, A., Lehner, F., Vrac, M., Yiou, P., Zscheischler, J., (2023). “Advancing research on compound weather and climate events via large ensemble model simulations“. Nat Commun 14, 2145. https://doi.org/10.1038/s41467-023-37847-5

 
Bommer, P. L., Kretschmer, M., Hedström, A., Bareeva, D., and Höhne, M. M. (2024)”Finding the right XAI Method — A Guide for the Evaluation and Ranking of Explainable AI Methods in Climate Science“. Artif. Intell. Earth Syst., https://doi.org/10.1175/AIES-D-23-0074.1, in press.
 

Brunner, M. I., Naveau, P., (2023), “Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models“. HESS, 27-3. https://doi.org/10.5194/hess-27-673-2023

Buriticá, G, Naveau P (2022), “Stable sums to infer high return levels of multivariate rainfall time series“.Environmetrics, 34( 4), e2782. https://doi.org/10.1002/env.2782

 
Cadiou, C., Noyelle, R., Malhomme, N. et al. “Challenges in Attributing the 2022 Australian Rain Bomb to Climate Change”. Asia-Pac J Atmos Sci (2022). https://doi.org/10.1007/s13143-022-00305-1
 
Camps-Valls, G., Gerhardus, A., Ninad, U., Varando, G., Martius, G., Balaguer-Ballester, E., Vinuesa, R., Diaz, E., Zanna, L., Runge, J., (2023)
Discovering causal relations and equations from data“, Physics Reports, Volume 1044, Pages 1-68. https://doi.org/10.1016/j.physrep.2023.10.005
 
Egli, M., Sippel, S., Pendergrass, A. G., de Vries, I., & Knutti, R. (2022). “Reconstruction of zonal precipitation from sparse historical observations using climate model information and statistical learning. Geophysical Research Letters, 49, e2022GL099826. https://doi.org/10.1029/2022GL099826
 

Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Messori, G., Noyelle, R., Pons, F., and Yiou, P. (2022). “A climate-change attribution retrospective of some impactful weather extremes of 2021“, Weather Clim. Dynam. Discuss, 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022

 
Faranda, D., Ginesta, M., Alberti, T., Coppola, E., Anzidei, M.(2023) “Attributing Venice Acqua Alta events to a changing climate and evaluating the efficacy of MoSE adaptation strategy“, npj Clim Atmos Sci 6, 181. https://doi.org/10.1038/s41612-023-00513-0
 

Faranda D., Messori G., Jézéquel A., Vrac M., Yiou P. (2023). “Atmospheric circulation compounds anthropogenic warming and impacts of climate extremes in Europe“. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.2214525120

 

Faranda D., Messori G., Yiou P., Thao S., Pons F., et al. (2023). Dynamical footprints of Hurricanes in the Tropical Dynamics“. Chaos: An Interdisciplinary Journal of Nonlinear Science, https://doi.org/10.1063/5.0093732

 

Faranda D., Pascale S., Bulut B. (2023). “Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought“. Environmental Research Letters. https://doi.org/10.1088/1748-9326/acbc37

 
Findell, K. L., Sutton, R., Caltabiano, N., Brookshaw, A., Heimbach, P., Kimoto, M., Osprey, S., Smith, D., Risbey, J. S., Wang, Z., Cheng, L., Diaz, L., Donat, M. G., Ek, M., Lee, J., Minobe, S., Rusticucci, M., Vitart, F., & Wang, L. (2022). Explaining and Predicting Earth System Change: A World Climate Research Programme Call to Action, Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-21-0280.1
 
Fischer, E.M., Beyerle, U., Bloin-Wibe, L. Gessner, C., Humphrey, V., Lehner, F., Pendergrass, A. G., Sippel, S., Zeder, J., Knutti, R. (2023). “Storylines for unprecedented heatwaves based on ensemble boosting“. Nat Commun 14, 4643. https://doi.org/10.1038/s41467-023-40112-4
 
François, B. and Vrac, M., (2023). “Time of emergence of compound events: contribution of univariate and dependence properties“, Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023
 

García-García, A., Cuesta-Valero, F.J., Miralles, D.G., Mahecha M.D., Quaas, J., Reichstein, M., Zscheischler, J., Peng, J. (2023) “Soil heat extremes can outpace air temperature extremesNature Climate Change. https://doi.org/10.1038/s41558-023-01812-3

Gardoll, S., Boucher, O. (2022). “Classification of tropical cyclone containing images using a convolutional neural network: performance and sensitivity to the learning dataset“. EGU sphere. https://doi.org/10.5194/egusphere-2022-147

 

Gimeno-Sotelo, L., Bevacqua, E., Gimeno, L. (2023). “Combinations of drivers that most favor the occurrence of daily precipitation extremes“. Atmospheric Research, Volume 294. https://doi.org/10.1016/j.atmosres.2023.106959

 
Jiang, S., Bevacqua, E., and Zscheischler, J. (2022). “River flooding mechanisms and their changes in Europe revealed by explainable machine learning”, Hydrol. Earth Syst. Sci. 26, 6339–6359.https://doi.org/10.5194/hess-26-6339-2022
 

Jiang, S, Tarasova, L., You, G., Zscheischler, J. (2024) “Compounding effects in flood drivers challenge estimates of extreme river floods“.Sci. Adv.10,eadl4005, https://doi.org/10.1126/sciadv.adl4005

Kendon, E.J., Fischer, E.M. & Short, C.J. (2023), “Variability conceals emerging trend in 100yr projections of UK local hourly rainfall extremes“. Nat Commun 14, 1133. https://doi.org/10.1038/s41467-023-36499-9

 

Le Grix, N., Cheung, W. L., Reygondeau, G., Zscheischler, J., Frölicher, T. L. (2023) “Extreme and compound ocean events are key drivers of projected low pelagic fish biomass“, Global Change Biology. https://doi.org/10.1111/gcb.16968

Li, D., Chen, Y., Messmer, M., Zhu, Y., Qi, J., Feng, J., Yin, B., and Bevacqua, E. (2022). “Compound wind and precipitation extremes across the Indo-Pacific: climatology, variability and drivers“. Geophysical Research Letters, 49, e2022GL098594. https://doi.org/10.1029/2022GL098594.

 

Li, J., Bevacqua, E., Chen, C., Wang, Z., Chen, X., Myneni, R. B., Wu, X., Xu, C., Zhang, Z., and Zscheischler, J. (2022). “Regional asymmetry in the response of global vegetation growth to springtime compound climate events”. Communications Earth & Environment 3, 123. https://doi.org/10.1038/s43247-022-00455-0.

 

Li, J., Bevacqua, E., Wang, Z., Sitch, S., Arora, V., Jain, A. K., Goll, D., Tian, H., Zscheischler, J. (2023). “Hydroclimatic extremes contribute to asymmetric trends in ecosystem productivity loss“. Commun Earth Environ 4, 197. https://doi.org/10.1038/s43247-023-00869-4

 

Lloyd, Elisabeth A., Shepherd, Theodore G., (2023) Foundations of attribution in climate-change science“, Environ. Res.: Climate 2 035014. https://doi.org/10.1088/2752-5295/aceea1

Mahecha, M.D., Bastos, A., Bohn, F.J., Feilhauer, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F.E.L., Peng, J., et al. (2024) “Biodiversity and Climate Extremes: Know Interactions and Research Gaps“, Earth’s Future, 12, e2023EF003963, https://doi.org/10.1029/2023EF003963

 
Miloshevich G, Lucente D, Yiou P, Bouchet F. (2024), “Extreme heat wave sampling and prediction with analog Markov chain and comparisons with deep learning, in. Environmental Data Science, vol. 3, e9. https://doi.org/10.1017/eds.2024.7
 
Naveau, P., Thao, S. (2022). “Multimodel Errors and Emergence of Times in Climate Attribution Studies“. Journal of Climate. Volume 35, Issue 14. https://doi.org/10.1175/JCLI-D-21-0332.1
 
Otto, F.E.L (2023) “Attribution of Extreme Events to Climate Change“, Annual Review of Environment and Resources Vol. 48. https://doi.org/10.1146/annurev-environ-112621-083538
 
Otto, F.E.L, Fabian, F. (2023) “Equalising the evidence base for adaptation and loss and damages“, Global Policy, 00, 111https://doi.org/10.1111/1758-5899.13269
 
Otto, F.E.L., Raju, E. (2023) “Harbingers of decades of unnatural disasters“. Commun Earth Environ 4, 280 (2023). https://doi.org/10.1038/s43247-023-00943-x
 

Otto, F. E. L., Zachariah, M., Saeed, F., Siddiqi, A., Kamil, S., Mushtaq, H., Arulalan, T., AchutaRao, K., Chaithra, S. T., Barnes, C., Philip, S., Kew, S., Vautard, R., Koren, G., Pinto, I., Wolski, P., Vahlberg, M., Singh, R., Arrighi, J., van Aalst, M., Thalheimer, L., Raju, E., Li, S., Yang, W., Harrington, L. J., Clarke, B., (2023). “Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan“. Environ. Res.: Climate. 2. 025001.https://doi.org/10.1088/2752-5295/acbfd5

 

Qian, C., Ye, Y., Bevacqua, E.,  Zscheischler, J. (2023) “Human influences on spatially compounding flooding and heatwave events in China and future increasing risks“, Weather and Climate Extremes, Vol. 42,
https://doi.org/10.1016/j.wace.2023.100616

 
Richards, J., Huser, R., Bevacqua, E., Zscheischler, J. (2023) “Insights into the drivers and spatio-temporal trends of extreme Mediterranean wildfires with statistical deep-learning“. Artif. Intell. Earth Syst., https://doi.org/10.1175/AIES-D-22-0095.1
In Press.
 

Rivoire, P., Le Gall, P., Favre, A.-C., Naveau, P., Martius, O. (2022). “High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions“, Weather and Climate Extremes, Volume 38. https://doi.org/10.1016/j.wace.2022.100500

 
Ronco, M., Tárraga, J.M., Muñoz, J., Piles, M., Sevillano Marco, E., Wang, Q., Miranda Espinosa, M.T., Ponserre, S., Camps-Valls, G.  (2023) “Exploring interactions between socioeconomic context and natural hazards on human population displacement“. Nat Commun 14, 8004. https://doi.org/10.1038/s41467-023-43809-8
 

Scholten, R.,C., Coumou, D., Luo, F., Veraverbeke, S., (2022) “Early snowmelt and polar jet dynamics coinfluence recent extreme Siberian fire seasons“. Science, Vol 378, Issue 6623. https://doi.org/10.1126/science.abn4419

 

Schumacher D. L., Hauser M., Seneviratne S. (2022), “Drivers and mechanisms of the 2021 Pacific North West Heatwave“. Earth’s Future. https://doi.org/10.1029/2022EF002967

 
 
Singh, J., Sippel, S. & Fischer, E.M. (2023) “Circulation dampened heat extremes intensification over the Midwest USA and amplified over Western Europe“. Commun Earth Environ 4, 432. https://doi.org/10.1038/s43247-023-01096-7
 

Sippel, S., Meinshausen, N., Székely, E., Fischer, E., Pendergrass, A. G., Lehner, F., and Knutti, R. (2021). “Robust detection of forced warming in the presence of potentially large climate variability“. Science Advances. 7, eabh4429.
https://www.science.org/doi/10.1126/sciadv.abh4429

 
van Straaten, C., K. Whan, D. Coumou, B. van den Hurk, and M. Schmeits, (2023) “Correcting Subseasonal Forecast Errors with an Explainable ANN to Understand Misrepresented Sources of Predictability of European Summer Temperatures“. Artif. Intell. Earth Syst., 2, e220047, https://doi.org/10.1175/AIES-D-22-0047.1.
 
Vautard, R., Cattiaux, J., Happé, T., Singh, J., Bonnet, R., Cassou, C., Coumou, D., D’Andrea, F., Faranda, D., Fischer, E., Ribes, A., Sippel, S., Yiou, P. (2023)Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends“. Nat Commun 14, 6803. https://doi.org/10.1038/s41467-023-42143-3
 
Vautard, R., van Oldenborgh, G. J., Bonnet, R., Li, S., Robin, Y., Kew, S., Philip, S., Soubeyroux, J.-M., Dubuisson, B., Viovy, N., Reichstein, M., Otto, F., and Garcia de Cortazar-Atauri, I. (2023). “Human influence on growing-period frosts like in early April 2021 in central France”, Nat. Hazards Earth Syst. Sci., 23, 1045–1058. https://doi.org/10.5194/nhess-23-1045-2023
 
Vijverberg, S., R. Hamed, and D. Coumou, (2023) “Skillful U.S. Soy Yield Forecasts at Presowing Lead Times“. Artif. Intell. Earth Syst., 2, e210009, https://doi.org/10.1175/AIES-D-21-0009.1.
 
de Vries, I. E., Sippel, S., Pendergrass, A. G., and Knutti, R., (2023). “Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change“, Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023
 
Worms, J., Naveau, P., (2022). “Record events attribution in climate studies“. Environmetrics, e2777. https://doi.org/10.1002/env.2777
 

Yiou, P., Cadiou, C., Faranda, D., Jézéquel, A., Malhomme, N., Miloshevich, G., Noyelle, R., Pons, F., Robin, Y., Vrac, M., (2023) “Ensembles of climate simulations to anticipate worst case heatwaves during the Paris 2024 Olympics“, npj Clim Atmos Sci 6, 188. https://doi.org/10.1038/s41612-023-00500-5

Zscheischler, J., Lehner, F., (2021). “Attributing compound events to anthropogenic climate change. BAMS. https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-21-0116.1/BAMS-D-21-0116.1.xml?tab_body=pdf

Pre-prints and work documents

Bevacqua, E., Rakovec, O., Schumacher, D., Kumar, R., Thober, S., Samaniego, L., Seneviratne, S., Zscheischler, J. (2024), “Direct and lagged climate change effects strongly intensified the widespread 2022 European drought” [Preprint] https://doi.org/10.21203/rs.3.rs-3982665/v1
 
Boutigny, M., Ailliot, P., Naveau, P., Saussol, B., Chaubet, A. (2023). “A meta-Gaussian distribution for sub-hourly rainfall“. Stochastic Environmental Research and Risk Assessment. In Press. http://dx.doi.org/10.1002/essoar.10506575.1
 

Faranda, D., Messori, G., Bourdin, S., Vrac, M., Thao, S., Riboldi, J., Fromang, S., Yiou, P. (2022). “Correcting biases in tropical cyclone intensities in low-resolution datasets using dynamical systems metrics“. [Preprint] ⟨hal-03631098⟩ 

 

Lafon, N., Fablet, R., Naveau, P. (2023). “Uncertainty quantification when learning dynamical models and solvers with variational methods“. Journal of Advances in Modeling Earth Systems [preprint] http://hal-emse.ccsd.cnrs.fr/LAB-STICC_OSE/hal-04013195v1

 

Lafon, N., Naveau, P., Fablet, R., (2023). “A VAE approach to sample multivariate extremes“. Submitted to Journal of Machine Learning Research [Preprint] https://hal.science/hal-04013214v1

 
Legrand, J., Ailliot, P., Naveau, P., Raillard, N. (2023). “Joint stochastic simulation of extreme coastal and offshore significant wave heights“. Accepted in Annals of Applied Statistics. [Preprint] https://hal.science/hal-04075497v1
 
Runge, J.,Gerhardus, A., Varando, G., Eyring, V., Camps-Valls, G., (2023). “Causal inference for time series“, Nature Reviews Earth & Environment 10. 2553. In Press. Preprint.

To go further

Falkena, S.K.J., de Wiljes, J., Weisheimer, A. & Shepherd, T.G.(2021) Detection of interannual ensemble forecast signals over the North Atlantic and Europe using atmospheric circulation regimes. Q J R Meteorol Soc, 148( 742), 434453. https://doi.org/10.1002/qj.4213
 
Ginesta, M., Yiou, P., Messori, G. et al. (2022) A methodology for attributing severe extratropical cyclones to climate change based on reanalysis data: the case study of storm Alex 2020Clim Dyn. https://doi.org/10.1007/s00382-022-06565-x

 

Lloyd, E.A., Shepherd, T.G. (2021). Climate change attribution and legal contexts: evidence and the role of storylines. Climatic Change 167, 28. https://doi.org/10.1007/s10584-021-03177-y

 

Mahecha M., Bastos A., Bohn F., Eisenhauer N., Feilhauer H., Hartmann H., Hickler T., Kalesse-Los H., Migliavacca M., Otto F., Peng J., Quaas J., Tegen I., Weigelt A., Wendisch M., Wirth C. (2022) “Biodiversity loss and climate extremes – study the feedbacks“. Nature 612, 30-32. https://doi.org/10.1038/d41586-022-04152-y

 

Shepherd, T.G. (2021). Bringing physical reasoning into statistical practice in climate-change science. Climatic Change 169, 2. https://doi.org/10.1007/s10584-021-03226-6

 

Smith D., Gillett N., Simpson I., Athanasiadis P., Baehr J., Bethke I., Bilge T., Bonnet R., Boucher O., Findell K., Gastineau G., Gualdi S., Hermanson L., Leung L. R., Mignot J., Müller W., Osprey S., Otterå Odd H., Persad G., Scaife A., Schmidt G., Shiogama H., Sutton R., Swingedouw D., Yang S., Zhou T., Ziehn T. (2022). Attribution of multi-annual to decadal changes in the climate system: The Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Frontiers in Climate 4, 2022. https://www.frontiersin.org/articles/10.3389/fclim.2022.955414

 
Yessimbet, K., Shepherd, T. G., Ossó, A. C., & Steiner, A. K. (2022). Pathways of influence between Northern Hemisphere blocking and stratospheric polar vortex variability. Geophysical Research Letters, 49, e2022GL100895. https://doi.org/10.1029/2022GL100895