Publications
Published papers acknowledging the XAIDA project
Anand M, Bohn FJ, Camps-Valls G, Fischer, R., Huth, A., Sweet, L.-B., Zscheischler, J. (2024). « Identifying compound weather drivers of forest biomass loss with generative deep learning« . Environmental Data Science, vol3, 2024, e4. https://doi.org/10.1017/eds.2024.2
Anand, M., Hamed, R., Linscheid, N., Silva, P.S., Andre, J., Zscheischler, J., Garry, F.K. and Bastos, A. (2024). « Winter climate preconditioning of summer vegetation extremes in the Northern Hemisphere« . Environmental Research Letters, 19(9). https://doi.org/10.1088/1748-9326/ad627d
Bastos, A., Sippel, S., Frank, D., Mahecha M., Zaehle, S., Zscheischler, J., Reichstein, M., (2023). « A joint framework for studying compound ecoclimatic events« . Nat Rev Earth Environ 4, 333–350. https://doi.org/10.1038/s43017-023-00410-3
Benson V, Robin C, Requena-Mesa C, Alonso L, Carvalhais N, Cortés J, Gao Z, Linscheid N, Weynants M, Reichstein M. (2024). « Multi-modal Learning for Geospatial Vegetation Forecasting. » Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), p. 27788-27799 (2024) CVPR 2024 Open Access Repository (thecvf.com)
Bevacqua, E., Zappa, G., Lehner, F., Zscheischler, J.(2022). « Precipitation trends determine future occurrences of compound hot–dry events« . Nature Climate Change. https://doi.org/10.1038/s41558-022-01309-5
Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., van der Wiel, K., Wu, W., Zhang, T., Zscheischler, J. (2021). « Guidelines for Studying Diverse Types of Compound Weather and Climate Events« . Earth’s Future. Volume 9, Issue 11. 25 October 2021. https://doi.org/10.1029/2021EF002340
Bevacqua, E., Suarez-Gutierrez, L., Jézéquel, A., Lehner, F., Vrac, M., Yiou, P., Zscheischler, J., (2023). « Advancing research on compound weather and climate events via large ensemble model simulations« . Nat Commun 14, 2145. https://doi.org/10.1038/s41467-023-37847-5
Brunner, M. I., Naveau, P., (2023), « Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models« . HESS, 27-3. https://doi.org/10.5194/hess-27-673-2023
Buriticá, G, Naveau P (2022), « Stable sums to infer high return levels of multivariate rainfall time series« .Environmetrics, 34( 4), e2782. https://doi.org/10.1002/env.2782
« Discovering causal relations and equations from data« , Physics Reports, Volume 1044, Pages 1-68. https://doi.org/10.1016/j.physrep.2023.10.005
Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Messori, G., Noyelle, R., Pons, F., and Yiou, P. (2022). « A climate-change attribution retrospective of some impactful weather extremes of 2021« , Weather Clim. Dynam. Discuss, 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022
Faranda D., Messori G., Jézéquel A., Vrac M., Yiou P. (2023). « Atmospheric circulation compounds anthropogenic warming and impacts of climate extremes in Europe« . Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.2214525120
Faranda D., Messori G., Yiou P., Thao S., Pons F., et al. (2023). « Dynamical footprints of Hurricanes in the Tropical Dynamics« . Chaos: An Interdisciplinary Journal of Nonlinear Science, https://doi.org/10.1063/5.0093732
Faranda D., Pascale S., Bulut B. (2023). « Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought« . Environmental Research Letters. https://doi.org/10.1088/1748-9326/acbc37
García-García, A., Cuesta-Valero, F.J., Miralles, D.G., Mahecha M.D., Quaas, J., Reichstein, M., Zscheischler, J., Peng, J. (2023) « Soil heat extremes can outpace air temperature extremes » Nature Climate Change. https://doi.org/10.1038/s41558-023-01812-3
Gardoll, S., Boucher, O. (2022). « Classification of tropical cyclone containing images using a convolutional neural network: performance and sensitivity to the learning dataset« . EGU sphere. https://doi.org/10.5194/egusphere-2022-147
Gimeno-Sotelo, L., Bevacqua, E., Gimeno, L. (2023). « Combinations of drivers that most favor the occurrence of daily precipitation extremes« . Atmospheric Research, Volume 294. https://doi.org/10.1016/j.atmosres.2023.106959
Jiang, S, Tarasova, L., You, G., Zscheischler, J. (2024) « Compounding effects in flood drivers challenge estimates of extreme river floods« .Sci. Adv.10,eadl4005, https://doi.org/10.1126/sciadv.adl4005
Kendon, E.J., Fischer, E.M. & Short, C.J. (2023), « Variability conceals emerging trend in 100yr projections of UK local hourly rainfall extremes« . Nat Commun 14, 1133. https://doi.org/10.1038/s41467-023-36499-9
Lafon, N., Fablet, R., Naveau, P. (2023). “Uncertainty quantification when learning dynamical models and solvers with variational methods“. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2022MS003446
Legrand, J., Ailliot, P., Naveau, P., Raillard, N. (2023). « Joint stochastic simulation of extreme coastal and offshore significant wave heights« . Annals of Applied Statistics vol. 17, 4. https://doi.org/10.1214/23-AOAS1766
Le Grix, N., Cheung, W. L., Reygondeau, G., Zscheischler, J., Frölicher, T. L. (2023) « Extreme and compound ocean events are key drivers of projected low pelagic fish biomass« , Global Change Biology. https://doi.org/10.1111/gcb.16968
Li, D., Chen, Y., Messmer, M., Zhu, Y., Qi, J., Feng, J., Yin, B., and Bevacqua, E. (2022). « Compound wind and precipitation extremes across the Indo-Pacific: climatology, variability and drivers« . Geophysical Research Letters, 49, e2022GL098594. https://doi.org/10.1029/2022GL098594.
Li, J., Bevacqua, E., Chen, C., Wang, Z., Chen, X., Myneni, R. B., Wu, X., Xu, C., Zhang, Z., and Zscheischler, J. (2022). “Regional asymmetry in the response of global vegetation growth to springtime compound climate events”. Communications Earth & Environment 3, 123. https://doi.org/10.1038/s43247-022-00455-0.
Li, J., Bevacqua, E., Wang, Z., Sitch, S., Arora, V., Jain, A. K., Goll, D., Tian, H., Zscheischler, J. (2023). « Hydroclimatic extremes contribute to asymmetric trends in ecosystem productivity loss« . Commun Earth Environ 4, 197. https://doi.org/10.1038/s43247-023-00869-4
Lloyd, Elisabeth A., Shepherd, Theodore G., (2023) « Foundations of attribution in climate-change science« , Environ. Res.: Climate 2 035014. https://doi.org/10.1088/2752-5295/aceea1
Mahecha, M.D., Bastos, A., Bohn, F.J., Feilhauer, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F.E.L., Peng, J., et al. (2024) « Biodiversity and Climate Extremes: Know Interactions and Research Gaps« , Earth’s Future, 12, https://doi.org/10.1029/2023EF003963
Otto, F. E. L., Zachariah, M., Saeed, F., Siddiqi, A., Kamil, S., Mushtaq, H., Arulalan, T., AchutaRao, K., Chaithra, S. T., Barnes, C., Philip, S., Kew, S., Vautard, R., Koren, G., Pinto, I., Wolski, P., Vahlberg, M., Singh, R., Arrighi, J., van Aalst, M., Thalheimer, L., Raju, E., Li, S., Yang, W., Harrington, L. J., Clarke, B., (2023). « Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan« . Environ. Res.: Climate. 2. 025001.https://doi.org/10.1088/2752-5295/acbfd5
Qian, C., Ye, Y., Bevacqua, E., Zscheischler, J. (2023) « Human influences on spatially compounding flooding and heatwave events in China and future increasing risks« , Weather and Climate Extremes, Vol. 42, https://doi.org/10.1016/j.wace.2023.100616
Rivoire, P., Le Gall, P., Favre, A.-C., Naveau, P., Martius, O. (2022). « High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions« , Weather and Climate Extremes, Volume 38. https://doi.org/10.1016/j.wace.2022.100500
Scholten, R.,C., Coumou, D., Luo, F., Veraverbeke, S., (2022) « Early snowmelt and polar jet dynamics co-influence recent extreme Siberian fire seasons« . Science, Vol 378, Issue 6623. https://doi.org/10.1126/science.abn4419
Schumacher D. L., Hauser M., Seneviratne S. (2022), « Drivers and mechanisms of the 2021 Pacific North West Heatwave« . Earth’s Future. https://doi.org/10.1029/2022EF002967
Sippel, S., Meinshausen, N., Székely, E., Fischer, E., Pendergrass, A. G., Lehner, F., and Knutti, R. (2021). « Robust detection of forced warming in the presence of potentially large climate variability« . Science Advances. 7, eabh4429. https://www.science.org/doi/10.1126/sciadv.abh4429
« Identifying probabilistic weather regimes targeted to a local-scale
impact variable« . Environmental Data Science. 2024;3:e25. https://doi.org/10.1017/eds.2024.29
Yiou, P., Cadiou, C., Faranda, D., Jézéquel, A., Malhomme, N., Miloshevich, G., Noyelle, R., Pons, F., Robin, Y., Vrac, M., (2023) « Ensembles of climate simulations to anticipate worst case heatwaves during the Paris 2024 Olympics« , npj Clim Atmos Sci 6, 188. https://doi.org/10.1038/s41612-023-00500-5
Yiou, P., Vautard, R., Robin, Y., de Noblet-Ducoudré, N., D’Andrea, F., Noyelle, R., (2024) « How could 50°C be reached in Paris: Analyzing the CMIP6 ensemble to design storylines for adaptation » Climate Services. Volume 36, 100518. https://doi.org/10.1016/j.cliser.2024.100518
Zeder J., Sippel S., Pasche O. C., Engelke S., and Fischer E. M. (2023) “The effect of a short observational record on the statistics of temperature extremes”, Geophysical Research Letters, 50. https://doi.org/10.1029/2023GL104090
Zhang M., Fernández-Torres M. Á., and Camps-Valls G. (2024) “Domain knowledge-driven variational recurrent networks for drought monitoring”. Remote Sensing of Environment, 311, 114252. https://doi.org/10.1016/j.rse.2024.114252
Zscheischler, J., Lehner, F., (2022). « Attributing compound events to anthropogenic climate change« . BAMS. https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-21-0116.1/BAMS-D-21-0116.1.xml?tab_body=pdf
Pre-prints and work documents
Cortes J., Mahecha MD., Reichstein M. and Brenning A.: “Reliable Trend detection in remotely-sensed products: A multiple-hypothesis-corrected approach integrating spatial extent and intensity”, under revision (2024)
Cortés-Andrés, J., Fernández-Torres, M. Á., & Camps-Valls, G. (2024, under review). Deep Learning with Noisy Labels for Spatio-Temporal Drought Detection.
Gonzalez-Calabuig, M., Fernández-Torres, M. Á., & Camps-Valls, G. (2024b, under review). Generative Networks for Spatio-Temporal Gap Filling of Sentinel-2 Reflectances.
Hamed, R., Lesk, C., Shepherd, T., Goulart, M. D., van Garderen, L., Coumou, D., (in review). One-third of the unprecedented global soybean production failure in 2012 is attributable to climate change. Nature Communications earth and environment.
Happé, T., van Straaten, C., Hamed, R., D’Andrea, F., Coumou, D. (in preparation). Observed circulation trends in boreal summer linked to two spatially distinct teleconnection patterns.
Lafon, N., Naveau, P., Fablet, R., (2023). « A VAE approach to sample multivariate extremes« . Submitted to Journal of Machine Learning Research [Preprint] https://hal.science/hal-04013214v1
Robin Noyelle, Yoann Robin, Philippe Naveau, Pascal Yiou, Davide Faranda (2024). « Integration of physical bound constraints to alleviate shortcomings of statistical models for extreme temperatures« . submitted ⟨hal-04479249⟩
Rouges, Kretschmer, Shepherd, (2024) On the link between weather regimes and energy shortfall during winter for 28 European countries, Meteorological Applications, in review
Schultz E., Massman, M., Coumou, D., (in preparation). Validating ENSO Feedbacks in Climate Models Using a Causal Discovery Method.
Schumacher D. L., Hamed R., Seeber S., Coumou D. & Seneviratne S. I.: Leveraging causal inference and physical model simulations to understand how dry soils intensify heatwaves. (in prep.)
Seeber S., Schumacher D. L., Hauser M., Gudmundsson L. & Seneviratne S. I.: Attributing the 2023 global heat. (in prep.)
Spanjers, B, Beutner, E, Coumou, D, Schaumburg, J: “New upper tail of the NAO index in winter drives persistent warm and wet winter weather in western and northern Europe”, in preparation
Spuler F, M Kretschmer, Y Kovalchuk, M A Balmaseda, T G. Shepherd (2024) Identifying probabilistic weather regimes targeted to a local-scale impact variable, Environmental Data Science (in press)
Teber, K., Sippel, S., Krausem M., et al. Inequality in human development amplifies climate-related disaster risk, 27 October 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-5331763/v1]
Thompson, V., Coumou, D., Beyerle, U., Ommer, J., Cloke, H. L., Fischer, E., (in review). Imagining worse floods using rainfall storylines from ensemble boosting. Nature Communications.
Vaittinada Ayar, P, Bourdin, S., Faranda, D., and Vrac, M., Ensemble Random Forest for Tropical Cyclone Tracking, in preparation
Weynants M, Ji C, Linscheid N, Weber U, Mahecha MD, Gans F: Dheed: an ERA5 based global database of dry and hot extreme events from 1950 to 2022, submitted to ESSD, preprint available at https://zenodo.org/doi/10.5281/zenodo.13710039 (2024)
Williams, T.K.E., Mahecha, M.D., Camps-Valls, G. (2024, under review) Forest Carbon Dynamics Lose Persistence Under Extremes.
To go further
Lloyd, E.A., Shepherd, T.G. (2021). Climate change attribution and legal contexts: evidence and the role of storylines. Climatic Change 167, 28. https://doi.org/10.1007/s10584-021-03177-y
Mahecha M., Bastos A., Bohn F., Eisenhauer N., Feilhauer H., Hartmann H., Hickler T., Kalesse-Los H., Migliavacca M., Otto F., Peng J., Quaas J., Tegen I., Weigelt A., Wendisch M., Wirth C. (2022) « Biodiversity loss and climate extremes – study the feedbacks« . Nature 612, 30-32. https://doi.org/10.1038/d41586-022-04152-y
Shepherd, T.G. (2021). Bringing physical reasoning into statistical practice in climate-change science. Climatic Change 169, 2. https://doi.org/10.1007/s10584-021-03226-6
Smith D., Gillett N., Simpson I., Athanasiadis P., Baehr J., Bethke I., Bilge T., Bonnet R., Boucher O., Findell K., Gastineau G., Gualdi S., Hermanson L., Leung L. R., Mignot J., Müller W., Osprey S., Otterå Odd H., Persad G., Scaife A., Schmidt G., Shiogama H., Sutton R., Swingedouw D., Yang S., Zhou T., Ziehn T. (2022). Attribution of multi-annual to decadal changes in the climate system: The Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Frontiers in Climate 4, 2022. https://www.frontiersin.org/articles/10.3389/fclim.2022.955414